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The largest perfluoro macrocycles, perfluoro [60]-crown-20
and perfluoro [30]-crown-10, have been synthesized using
the new continuous addition solution phase direct fluorina-
tion technique and characterized using 19F NMR and mass
spectrometry.

The syntheses of perfluoro crown ethers were first reported in
1985.1 Perfluoro macrocycles have important medical applica-
tions such as 19F NMR imaging and oxygen carrier applica-
tions.2,3 Perfluoro crown ethers generally do not form stable
complexes with cations because the basicities of perfluoro
crown ethers dramatically decrease as the amount of fluorine
substitution increases.4,5 However, perfluoro crown ethers form
complexes with anions, such as O2

2 and F2, in gas phase
reactions.6 Prior to 1997, only thirteen perfluoro macrocycles
were reported and all were synthesized by members of our
fluorine research group using low temperature, below room
temperature, direct fluorination synthetic techniques.1,3,7–9 In
this paper, we have explored the possible synthesis of
perfluorinated organic compounds at higher temperature, above
room temperature, during the initial stage of fluorination. The
largest perfluoro macrocycles, perfluoro [60]-crown-20 1 and
perfluoro [30]-crown-10 2, have been successfully synthesized
by using a new continuous addition solution phase direct
fluorination technique. In the future, the synthesis of higher
molecular weight perfluoro macrocycles will enable us to
further explore the chemistry of the perfluoro macrocycles, such
as ion complex chemistry and oxygen carrier applications.

In general, the rate of fluorination must be slow enough to
allow vibrational energy relaxation processes to occur by
collisions in an inert solvent. Many direct fluorination reactions
are performed below room temperature during the initial stage
of fluorination because reaction rates are so fast that excessive
fragmentation occurs and a much lower temperature is required.
We initially lowered the fluorination temperature to minimize
possible ring opening reactions during fluorination of
[60]-crown-20. Several first attempts to perfluorinate
[60]-crown-20 at lower temperatures, 0, 210, 220 and 230 °C,
during the initial stage of fluorination were unsuccessful.
Interestingly, as the temperature of the initial stage of
fluorination decreased, the degree of fluorination decreased and
only partial fluorination occurred. These observations were
confirmed by 1H, 19F NMR spectroscopy and mass spectrome-
try. Therefore, we increased the initial stage reaction tem-
perature to 26 °C and succeeded in the synthesis of perfluoro
[60]-crown-20 1.

At room temperature, [60]-crown-20 molecules are con-
formationally flexible8 and hydrogen atoms can be replaced by
fluorine even at sites which are sterically protected by the
configuration of the carbon skeleton of [60]-crown-20 during
fluorination. In contrast, the [60]-crown-20 molecules are less
flexible at lower temperatures. Once the ‘surface’ hydrogen
atoms of [60]-crown-20 are replaced by fluorine, the non-
bonding electron cloud of the fluorine atoms tends to repel the

oncoming fluorine molecules as they approach the [60]-crown-
20 molecules and only partially fluorinated products are
obtained. Under such vigorous fluorination conditions, higher
temperature solution phase fluorination, fragmentation products
were also obtained and the yield of perfluoro [60]-crown-20
was 14%. However, perfluoro [30]-crown-10 2 was synthesized
in 50% yield using the direct fluorination method with reaction
temperatures escalating from 220 to 26 °C, as described in the
literature.9,10 The spectral data were in agreement with the
structural assignments of perfluoro [60]-crown-20 1 and
perfluoro [30]-crown-10 2.11

In conclusion, the largest perfluoro macrocycle, perfluoro
[60]-crown-20 1 and perfluoro [30]-crown-10 2, were synthe-
sized by direct fluorination and characterized using 19F NMR
spectroscopy and mass spectrometry. Perfluoro [60]-crown-20
1 and perfluoro [30]-crown-10 2 are expected to be biologically
inert, in contrast to their hydrocarbon analogues, and may be
useful in biological or medical applications where physio-
logically inert or oxygen carrying fluids are required. Perfluoro
[60]-crown-20 1 has also shown potential as a very clean, high
mass compound for use as a mass spectral marker material in the
chemical ionization negative mode.
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2320 (C40F80O20, M2, 100). The elemental compositions were studied
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perfluoro[30]-crown-10. Perfluoro [30]-crown-10 was synthesized in a
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